Volltextsuche über das Angebot:

3 ° / 1 ° Schneeregen

Navigation:
Neues Prinzip der Informationsverarbeitung

Forschungsprojekt des Max-Planck-Instituts Neues Prinzip der Informationsverarbeitung

Ein Computer ist weit mehr als reine Hardware. Völlig losgelöst von dieser ist er vor allem ein Prinzip, wie sich Daten und Information verarbeiten lassen. Im Fall des konventionellen Computers, der längst unseren Alltag bestimmt, liegt die Essenz somit nicht in Transistoren, Chips und Halbleitern versteckt. 

Voriger Artikel
„Nicht bange machen lassen“
Nächster Artikel
Sternhaufen, Funkenschlag und Chemie-Parcours

Komplex: Netzwerke von Sattelzuständen.

Quelle: Fabio Schittler Neves and Marc Timme, MPIDS Göttingen and the American Physical Society.

Vielmehr zeichnet er sich durch die Art und Weise aus, wie sich mit Hilfe zweier leicht unterscheidbarer Zustände (gemeinhin 0 und 1 genannt) Rechenoperationen ausführen lassen.

Ein völlig anderes Prinzip Information zu verarbeiten, haben nun Wissenschaftler vom Max-Planck-Institut für Dynamik und Selbstorganisation (MPIDS) in Göttingen entwickelt. Ihr so genannter complex network computer ist ebenfalls in der Lage, Rechenoperationen vorzunehmen, tut dies aber unter völlig anderen Bedingungen.

Pendel als Beispiel

„Völlig anders als bei der klassischen Informationsverarbeitung auf dem PC beruht unser neues Konzept nicht auf einem binären System aus Nullen und Einsen“, erklärt Prof. Marc Timme, Leiter der Forschungsgruppe Netzwerk-Dynamik am MPIDS. Als Grundbausteine des complex network computer sind zudem prinzipiell alle Systeme denkbar, die schwingen können. „Das einfachste Beispiel ist ein Pendel“, so Timme.

Doch auch bestimmte Stromkreise, deren Bauteile die elektrische Ladung rhythmisch unter einander austauschen, oder Laser können in übertragenem Sinne schwingen. Stehen mehrere solcher Grundbausteine miteinander in Verbindung – wie etwa mehrere Pendel, die über eine Feder miteinander gekoppelt sind – zeigen sie ein spezielles dynamisches Verhalten, das sich geschickt zum Verarbeiten von Daten nutzen lässt.

Gekoppelte Pendel

Schlüssel zu diesem Verhalten sind so genannte Sattelpunkte. Gemeint sind Zustände des Gesamtsystems, die in mancher Hinsicht stabil, in anderer instabil sind. „Man denke sich etwa eine Kugel, die in der Mulde eines tatsächlichen Sattels ruht“, erklärt Timme. Lenkt man diese Kugel exakt parallel zum Pferderücken aus, rollt sie zuverlässig in die Mulde zurück. Der Ausgangszustand ist gegenüber dieser Art von Störung stabil. Wird die Kugel jedoch senkrecht zum Pferderücken angestoßen, zeigt sich ein völlig anderes Bild: Die Kugel fällt herunter; der Zustand ist instabil.

Im Fall gekoppelter Pendel entspricht eine bestimmte Choreographie der Schwingungen, bei der sich bestimmte Pendel synchron bewegen, einem solchem Sattelpunkt-Zustand. Allgemein bilden in Systemen gekoppelter schwingender Elemente solche Sattelpunkt-Zustände eine Art Netzwerk: Als Reaktion auf eine äußere Störung, die einen bestimmten Sattelpunkt-Zustand destabilisiert, geht das Gesamtsystem in einen anderen Sattelpunkt-Zustand über. „In unserem Beispielsystem führt jeder Sattelpunkt so zu zwei weiteren, die wiederum mit zwei weiteren Zuständen verbunden sind“, beschreibt Dr. Fabio Schittler Neves vom MPIDS. Welchen Weg sich das System in diesem Netz möglicher Zustände tatsächlich bahnt, hängt von der Art der Störung ab.

„In unserem Konzept fassen wir jede Störung als Eingangssignal auf, das aus mehreren Teilsignalen zusammengesetzt sein kann“, so Schittler Neves. Jedes Teilsignal spricht eines der schwingenden Elemente des Gesamtsystems an. Im Fall einer Gruppe gekoppelter Pendel etwa entspricht ein Teilsignal einem kleinen Schubs, den ein einzelnes Pendel erhält. Das Verhältnis der Stärken dieser Teilsignale gibt dann den Ausschlag, welchem neuen Sattelpunkt-Zustand das System zustrebt.

Complex Network Computer

Das Eingangssignal bestimmt somit einen ausgesuchten Weg durch das Netzwerk der Sattelpunkte. Der eingeschlagene Pfad entspricht dem Ergebnis der Rechnung. „Der Zustand, den das System so annimmt, erlaubt Rückschlüsse auf das Größenverhältnis der einzelnen Teilsignale“, erläutert Timme. „Es ist eine Art Sortieren nach Größe.“
In ihrer jüngsten Veröffentlichung konnten die Forscher nun zeigen, dass sich auf diese Fähigkeit eine komplette Logik aufbauen lässt: Alle logischen Operationen – wie etwa Addition, Multiplikation und Verneinung – lassen sich so darstellen. Doch während beim klassischen Computer ein Bauteil – also ein Teilsystem des gesamten Computers – eine bestimmte logische Operation wie beispielsweise eine Addition ausführt, findet im Fall des complex network computer die Operation gleichzeitig im gesamten Netzwerk statt. „Alle logischen Operationen lassen sich deswegen in diesem Netzwerk gleichermaßen ausführen“, so Timme.

Dadurch können bereits relativ kleine Systeme eine unglaublich große Vielzahl möglicher Operationen ausführen: Während mit fünf schwingenden Elementen lediglich zehn verschiedene Systemzustände erreicht und somit zehn verschiedene Rechnungen ausgeführt werden können, ergeben sich für 100 Elemente bereits 5 mal 1020.
Diese Anzahl entspricht dem 10 000-fachen aller Buchstaben in allen Büchern in allen Bibliotheken der Welt. Zudem löst der complex network computer einige Aufgaben wie etwa das grobe Sortieren von Zahlen deutlich schneller als sein konventionelles Gegenstück.

eb

Voriger Artikel
Nächster Artikel

Spannende Ausbildungsplätze in Deiner Region warten auf Dich. Starte jetzt durch mit azubify ! mehr

Amnesty-Protest auf dem Campus